Analysis and Control of a Dissipative Spring-Mass Hopper with Torque Actuation
نویسندگان
چکیده
It has long been established that simple springmass models can accurately represent the dynamics of legged locomotion. Existing work in this domain, however, almost exclusively focuses on the idealized Spring-Loaded Inverted Pendulum (SLIP) model and neglects passive dissipative effects unavoidable in any physical robot or animal. In this paper, we extend on a recently proposed analytic approximation to the stance trajectories of a dissipative SLIP model to analyze stability properties of a planar hopper with a single rotary actuator at the hip. We first describe how a suitably chosen torque controller can compensate for damping losses, maintaining the same energy level across strides and hence reducing the return map to a single dimension. We then identify and characterize equilibrium points for this return map under a fixed leg placement policy and show that “uncontrolled” asymptotic stability is feasible for this energy-regulated system. Subsequent presentation of simulation evidence establishes that the predictions of this approximate model are consistent with the exact plant model. The paper concludes with the application of our energy-regulation scheme to the design of a task-level gait controller that uses explicit leg placement commands in conjunction with the hip torque.
منابع مشابه
Analysis and Control of a Dissipative Spring-Mass Hopper with Torque Actuation
It has long been established that simple springmass models can accurately represent the dynamics of legged locomotion. Existing work in this domain, however, almost exclusively focuses on the idealized Spring-Loaded Inverted Pendulum (SLIP) model and neglects passive dissipative effects unavoidable in any physical robot or animal. In this paper, we extend on a recently proposed analytic approxi...
متن کاملStride-to-stride energy regulation for robust self-stability of a torque-actuated dissipative spring-mass hopper.
In this paper, we analyze the self-stability properties of planar running with a dissipative spring-mass model driven by torque actuation at the hip. We first show that a two-dimensional, approximate analytic return map for uncontrolled locomotion with this system under a fixed touchdown leg angle policy and an open-loop ramp torque profile exhibits only marginal self-stability that does not al...
متن کاملModel-Based Identification and Control of a One-Legged Hopping Robot
MODEL-BASED IDENTIFICATION AND CONTROL OF A ONE-LEGGED HOPPING ROBOT Hasan Eftun Orhon M.S. in Electrical and Electronics Engineering Advisor: Ömer Morgül January 2018 Spring-mass models are well established tools for the analysis and control of legged locomotion. Among the alternatives, spring-loaded inverted pendulum (SLIP) model has shown to be a very accurate descriptor of animal locomotion...
متن کاملDynamics Modeling and Control Architecture for Efficient, Manoeuvrable and Robust Monoped Hopping over Rough Terrain
Leg dynamics and control have been widely studied using mass-spring systems such as the Spring Loaded Inverted Pendulum (SLIP) model [1]. The SLIP model is commonly accepted as the simplest model that resembles leg dynamics. While simplicity facilitates the understanding of the basic aspects of system behavior, it can result in neglecting some essential factors from control perspective such as ...
متن کاملDesign and Characterization of a Novel High-Power Series Elastic Actuator for a Lower Limb Robotic Orthosis
A safe interaction is crucial in wearable robotics in general, while in assistive and rehabilitation applications, robots may also be required to minimally perturb physiological movements, ideally acting as perfectly transparent machines. The actuation system plays a central role because the expected performance, in terms of torque, speed and control bandwidth, must not be achieved at the expen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010